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ABSTRACT 

In this paper, we have done few investigations on some dynamical as well as structural properties of the 

Mandelbrot set, which arises as a fractal from the iteration of the complex polynomial of the form cz 2 . We have also 

discussed about some amazing features shown by the periodic numbers and rotation numbers related to the primary bulbs 

of the Mandelbrot set. 
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1. INTRODUCTION 

The Mandelbrot set has a celebrated place in fractal geometry, a field first investigated by the French 

Mathematicians, Gaston Julia and Pierre Fatou, as a part of complex dynamics in the beginning of the 20
th

 century.      

Gaston Julia (1893-1978) wrote a paper titled, "M´emoire sur l’iteration des fonctions rationelles" (A Note on the Iteration 

of Rational Functions) [19], where, he first introduced the modern idea of a Julia set as a part of complex dynamics.            

In this paper, Julia gave a precise description of the set of those points of the complex plane, whose orbits under the 

iteration of a rational function stayed bounded. In 1978, Robert W. Brooks and Peter Matelski investigated some subgroups 

of Kleinian groups [27] and, as a part of this investigation; they first introduced the concept of what we now called 

Mandelbrot set. 

Benoit Mandelbrot (1924-2010) was a Polish-born French mathematician, who spent most of his career at IBM's 

Thomas J. Watson Research Center in Yorktown Height, New York. He was inspired by Julia's above mentioned paper on 

complex dynamics and used computers to explore these works. In the year 1977, as a result of his research, he discovered 

one of the most famous fractals, which now bears his name: the Mandelbrot set. On 1
st
 March 1980, Mandelbrot first 

visualized this set [28]. He studied the parameter space of the complex quadratic polynomials in an article, which appeared 

in the 'Annals of New York Academy of science' [22]. 

The Mathematical study of the Mandelbrot set actually began with the works of Adrien Douady and John H. 

Hubbard [13], who established many of its fundamental properties and named the set in honor of Mandelbrot. Interest in 

the subject flourished over, and many other well known mathematicians began to study the Mandelbrot set. Heinz-Otto 

Peitgen and Peter Richter are the names of two such mathematicians who became well known for promoting the 

Mandelbrot set with computer oriented graphics and books [25].  
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A good account of developing period of the theory of complex dynamics can be found in [4], [8], [9], [31].                   

The authors are among the most active contributors to this field. 

Mandelbrot set may well be one of the most familiar images produced by the mathematicians and other related 

scientists of the 20
th

 century. It challenges the familiar notion that the domain of simplicity and complexity are entirely 

different. Because, the mathematical formula that is involved in the construction of Mandelbrot set consists of simple 

operations like multiplication and addition, still it produces a shape of great organic beauty and complexity with infinite 

subtle variations. The developments arising from the Mandelbrot set have been as diverse as the alluring shapes it 

generates. 

The shape of the Galaxies broke all Euclidean laws of the man-made world and deferred from the properties of 

natural world. If one identified an essential structure like this, Mandelbrot claimed, that the concept of Mandelbrot set,      

in general fractal geometry, could be applied to understand its component parts and make postulations about what it will 

become in future. For instance, interested readers may see [29] for study about distribution of galaxies in an observed 

universe. In today's world of wireless communication, many wireless devices use fractal based compact and potable 

antennas that pick up the widest range of known frequencies [2], [20]. Fractal art is a form of algorithmic art created by 

fractal objects produced by repeated iterations of some mathematical rules and representing the calculated results as still 

images, animations etc. The Mandelbrot set can be considered as a great icon for fractal art. Graphic design and image 

editing programs use fractal to create beautifully complex landscapes and life-like special effects. Interested readers can go 

through [5], [26] for finding such applications. Fractal statistical analyses of forest can measure and quantify how much 

carbon dioxide the world can safely process [23]. Fractal geometry may also be applied to the various fields of medicine 

such as cardiovascular system, neurobiology, pathology and molecular biology [7], [17]. 

The Mandelbrot set, like most of the other fractals, arises from a simple iterative process. The process involved 

here is the iteration of the non-linear relation czz nn 

2

!  on the points of the complex plane. It turns out that the same 

relation was already studied in the early 20
th

 century by French Mathematicians Gaston Julia and Pierre Fatou which lead 

to the discovery of the Julia sets. Like the Mandelbrot set, the Julia set also have a fractal structure and are generated by 

using the same iterative process employed in the generation of the Mandelbrot set, but with slightly different initial 

conditions. Interested reader may go through [21]. There is only one Mandelbrot set and infinitely many Julia sets- each 

point on the complex plane acting as a parameter to the Julia set. 

The Mandelbrot set, a very beautiful fractal structure enjoys a special status as a cultural icon. Also, deep 

mathematics underlies the Mandelbrot set. Despite years of study by brilliant mathematicians, some natural and                      

simple-to-state questions still remains un-answered. For example, though Mandelbrot set was known to the mathematical 

community since 1977, due to the complex form of shape, its area was estimated approximately to be 

0000000028.00565918849.1   by Thorsten Förstemann, only in 2012 [16]. Much of the re-birth of interest in complex 

dynamics was motivated by efforts to understand the stunning images of Mandelbrot set, which is the prime objective of 

this paper. 

The rest of the paper is organized as follows: in section 2, we provide a review of preliminary concepts and 

definitions. In section 3, we have described about the geometrical structure and different components related to the 

Mandelbrot set, which are required for our further investigation. Section 4 contains discussion on some structural as well as 
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dynamical properties of the Mandelbrot set and, some amazing features shown by the periodic numbers and rotation 

numbers are related to the primary bulbs of the Mandelbrot set. Finally, in section 5, we have given a concluding remark of 

our study. 

2. PRELIMINARIES 

In order to carry out the study, we first need to provide some definitions concerning classical deterministic chaotic 

dynamical systems that are discussed in this section. 

Definition 2.1 [18] 

The orbit of a number 0z under function CCf ˆˆ:   where Ĉ  denote the extended complex plane i.e., 

  CĈ  is defined as the sequence of points 

         ,,,,, 100

2

2010  n

n

n zfzfzzfzzfzz
                                    

(2.1) 

Here, 
nf  denote the n

th
 iterate of f , that is, f  composed with itself n  times. The point 0z is called the seed of 

the orbit. 

For each point Cz ˆ
0 , we are interested in the behavior of the sequence given in (2.1) and in particular,     

what happens as n  goes to infinity. 

Definition 2.2 [14] 

A point Cz ˆ
0  is called periodic point of f  if 00 )( zzf n   for some integer 1n .    The smallest n  with 

this property is called the period of 0z . Thus, the periodic points of 0z  are the zeros of the function 

000 )(),( zzffzF n  . 

A periodic point with period one is termed as fixed point of f  i.e., 0z  is a fixed point of f  if 00 )( zzf  . 

Definition 2.3: [18]  

Let Cv ˆ . For any complex valued function DDf :
 

where CD ˆ , the attracting basin or basin of 

attraction of v  under the function f  is defined as the set )( vA f  of all seed values whose orbit limits to the point v ,i.e. 

 vzfDzvA n
f  )(:)(  

Definition 2.4 [12] 

The multiplier (or eigenvalue, derivative)   of a rational map f  iterated n  times, at the periodic point 0z  is 

defined as: 
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0
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00

,

)(
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),(

zif

zf

zifzf

n

n

  

where )( 0zf n
 is the first derivative of 

nf  with respect to z  at 0z . 

Note that, the multiplier is same at all periodic points of a given orbit. Therefore, it can be regarded as multiplier 

of the periodic orbit. 

The absolute value of the multiplier is called the stability index of the periodic point. It is used to check the 

stability of periodic points. 

Definition 2.5 [12] 

A periodic point 0z  is called attracting periodic point if 1 , supper attracting if 0  and is repelling if 

1 . It is called indifferent or neutral when 1  

A dynamical system is a collection of three things FTX ,,  where, X  is a state space, T  is a set of time and 

XTXF : is a function that specifies how the state evolves with time, i.e. ),( txF  give the state at time t when the 

initial state was x . 

Definition 2.6 [6] 

Let X  be a metric space and suppose XXf : is continuous then the periodic points of f are called dense in 

X  if for any periodic point 1p  of f and for any 0 , however small may be, the open sphere  1pS  contains 

another periodic point 2p  of f . 

Definition 2.7 [6] 

A continuous map XXf : on the metric space X  is called transitive if for any open sets U  and V of X , 

there exists a natural number n  such that   VUf n . 

Definition 2.8 [6] 

Let X  be a metric space and suppose XXf : is a continuous map, then we say that f  exhibits sensitive 

dependence on initial conditions if there exist a constant 0  such that for any Xp  and any neighborhood U  of p , 

there exists 0n  and Uy  such that      yfpfd nn ,  

Definition 2.9 [6] 

In a dynamical system fTX ,, the function f  is called chaotic on X  if the following two conditions are 

fulfilled: 
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1. Periodic points for f  are dense in X , 

2. The function f is transitive on X . 

Note that according to most of the literature, f is considered to be chaotic on X if together with these two 

conditions it also satisfied: 

3. f depends sensitively on initial conditions. 

Devaney proved that conditions (1) & (2) together implies condition (3), proof of this result may be found in [3]. 

To carry out our study for the rest of this paper we consider the maps of the form: 

  czzf c  2
                                                                                                                                                   (2.2) 

For different values of the parameter Cc ˆ . 

Definition 2.10 [6] 

The Julia set of cf , denoted by  cfJ , is the set of all points at which cf  exhibits sensitive dependence on initial 

condition. That is,  cfJ  is the chaotic set for cf . The complement of  cfJ  is a stable set for cf  and it is called Fatou 

set of cf . 

Definition 2.11 [6] 

The set  cfK  of all those points of Ĉ  which do not converge to  under iteration of the map cf  is called the 

filled in Julia set of the map cf . 

Theorem 2.1 

The filled in Julia set  cfK  is contained inside the closed disc of radious  2,max c . That is 

    .2,max: czzfK c   

The proof of this theorem can be found in [8] 

Definition 2.12 [24] 

A point Cz ˆ
0  is called critical point for the analytic function f  if 0)( 0  zf . 

The simplest method for visualizing Julia sets is 'Escape Time' algorithm. For the details of how the Julia set can 

be visualized interested reader may see [21]. The computation of Julia sets for various values of the parameter ' c ' shows 

that as the value of the parameter changes, a dramatic change in the shape of the Julia set takes place. At this point, a 

natural question arises - how to classify or understand all of these interesting shapes of Julia sets? The structure of the Julia 

set is strongly influenced by the behavior of the critical point of cf . To know the role of the critical point, we need to first 

explore the concept of Schwarzian derivative. 
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Definition 2.13 [8] 

The Schwarzian derivative of a function f  is defined as 

 
 
 

 
 

2
23

2

3















xDf

xfD

xDf

xfD
xSf  

Where,  xfD n
 represent the n

th
 derivative of the function   3,2,1, nxf . 

Theorem 2.2 [8] 

Suppose that Sf  is always negative. If 0x  is an attracting periodic points of f , then either the immediate basin 

of attraction of 0x  extends to  , or there is a critical orbit of f , whose orbit is attracted to the orbit of 0x . 

The proof of this theorem may be found in [24]. 

The Mandelbrot set is defined by the behavior of the critical point for the function cf . Clearly, there is only one 

critical point 0z  for the polynomial cf . The subset of the parameter plane (or c-plane) consists of all parameter value c  

for which, the orbit of 0z under the map cf , i.e. 

   ccccccfc

2220:  

is bounded is termed as the Mandelbrot set. 

Note that there are infinitely many Julia sets (one for each c ), whereas, there is only one Mandelbrot set. 

Definition 2.14 [24] 

The Mandelbrot set M  is defined as: 

 cfbyiterationunderboundedisofOrbitTheCcM 0:  

        NnrfrCc n
c  ,0,0:

 

3. GEOMETRICAL STRUCTURE OF THE MANDELBROT SET AND DIFFERENT TERMS 

RELATED TO THE STRUCTURE 

One of the particular interests is to represent Mandelbrot set, graphically. The simplest algorithm for generating a 

representation of the Mandelbrot set is that of Julia set, where we color each point on the parameter space, depending on 

where its attractor lies i.e. whether it is attracted to infinity or bounded within the set. The Mandelbrot set's true visual 

beauty relies on the coloring near its boundaries. Developing a strong coloring algorithm helps display the beauty of the 

set, by providing the stunning visual aspect of the set which also gives the excitement of studying the set. One of the most 

popular ways of doing this is by assigning different colors to the points in the various regions such as inside the set 

boundary of the set. Also, for the points just outside the boundary, colors are determined by the number of iterations 

needed by the point to exceed a certain test value (usually 2 ). In the Figure 1.3 , we use blue for the points inside the set, 

green for that in the boundary of the set and orange color for the points just outside the set.  
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Gradually, deeper color in orange indicates less number of iterations needed to exceed test value 2  in magnitude. 

 

Figure 3.1: (The Mandelbrot Set) 

Computer images of the Mandelbrot set, as in the figure 3.1, shows the estimated geometry of the Mandelbrot set. 

It contains a big cardioids shaped region, called the body of the Mandelbrot set. This region is indicated by B in Figure 3.2 

and it intersects the real axis at 
4

1
c  & 

4

3
c . Towards its left, a circular area H with center at 1c  and radius 

4

1
 

is attached, called the head of the set. The surface of these two parts is covered by some richly detailed structure of 

decoration, which makes the set a fractal one. Closer inspection of these decorations shows that all of them are different in 

shape. Any such decoration directly attached to the body is called a primary bulb or decoration. In turn, there are many 

smaller decorations attached to the boundary of each of these decorations as antennas. Again, antennas attached to each 

decoration seem to consist of several spokes. The number of such spokes varies from decoration to decoration as clearly 

visible in the Figure 3.2. Towards the left of head (just touching it), another circular region (smaller than the head) is 

attached, called the secondary head. It is important to mentioned here that though the Mandelbrot set is a fractal object,    

its boundary is so complex and intricate that it has an integer dimension two [30]. 

 

Figure 3.2: (Components of Mandelbrot) 

4. SOME PROPERTIES OF MANDELBROT SET 

In this section, we have studied some properties of the Mandelbrot sets for the complex polynomial of the form 

cz 2
. 
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Proposition 4.1 

All the points within the circle  0

4

1S  of radius 
4

1
 and centre at origin are contained in the Mandelbrot set. 

Proof 

Suppose,  0

4

1Sc   
4

1
 c . 

Recall that the orbit of '0'  under cf  is: 

     ,,,,,0
222222 ccccccccc   

We apply induction to show that the orbit of '0'  under cf  is bounded. 

Clearly,  
4

1
0  cfc  

   
2

1

4

1

4

1
0

2

222 







 cccccff cc  

Suppose, 
2

1
r

cf  where, r  is any natural number. 

Now,        
2

1

4

1

4

1
000

221  cfcffff r
c

r
c

r
cc

r
c

  

By law of induction, the orbit of '0'  under cf  is bounded and hence Mc  . 

Proposition 4.2 

The Mandelbrot set M  is bounded. 

Proof 

We have   cf c 0  

     10
222  cccccccff cc  

For 2c , we have 11  c , and so   ccf c  . 

       23 0  ccfcfff cccc   

Suppose,   10  mm
c cf   for some Nm  

Now,        mm
c

m
cc

m
c cffff   0001
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By induction,   10  nn
c cf   

Thus for 2c  the iterates of ' 0 ' under cf  diverse to infinity, and hence Mc  . This shows that entire 

Mandelbrot set is contained in the circle of radius 2  and centre at the origin i.e. 

Mcc  2 . Thus, the Mandelbrot set is bounded. 

Proposition 4.3 

The Mandelbrot set M  is symmetric about the real axis. 

Proof 

Recall that any subset S  of the complex plane is symmetric about the real axis, if conjugate of each element of S  

belongs to S  i.e. SzSz 


. 

First we show that    zfzf n

c

n
c 

_____

. 

     zfczczczzf
c

c  22
_________

2
_______

 

In order to apply induction we assume that    zfzf m

c

m
c 

_______

 for some Nm . 

              zfczfczfczfzffzf
m

c

m

c

m
c

m
c

m
cc

m
c

12

2
_______________________

2
____________________

1 
 













  

Thus by induction,    zfzf n

c

n
c   for all CzNn  & . 

Now, let   



1

0
n

n
cfMc  is bounded. 

 


















1

_______

0

n

n
cf  is bounded as 

_

zz    

 










 

1

0
n

n

c
f  is bounded 

Mc   

Hence the set M  is symmetric about the real axis. 
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Proposition 4.4 

The Mandelbrot set M  intersect the real line on the closed interval 










4

1
,2  i.e. 











4

1
,2MR . 

Proof 

The orbit of 0  under 2f  is: ,2,2,2,2,0  which is bounded so M2 . 

Also, by proposition 4.2, the Mandelbrot set is contained in the circle of radius 2 and center at the origin, 

therefore, no real number less than 2  belongs to M . 

For 
4

1
c  , we have for any Nn   

        00001 n
c

n
cc

n
c

n
c fffff 

 

     cff n
c

n
c  00

2
   

 
4

1

2

1
0

2









 cf n

c   

0
4

1
 c  

Therefore,     Nnff n
c

n
c  001

    nasf n
c 0 . 

Hence, Mc  . 

The fixed points of cf  are given by:  

  0.,. 2  czzeizzf c  

Solving  cz 411
2

1
1  ,    cz 411

2

1
2  . 

For 02  c  we have 3411  c  and therefore 01 1  z  and 21 2  z which implies that

 21 ,0 zz . In this case      2221
2 ,,, zczcfzzf cc  . It follows that the orbit of ' 0  ' under cf  is bounded, 

so Mc  . 

For 
4

1
0  c , we have 

2

1
0 1  z  and 1

2

1
2  z . 

In this case,      222 ,0,,0 zzczfc   so in this case also the orbit of ' 0  ' under cf  is bounded and 

hence Mc  . 
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Combining all these one can easily conclude that 










4

1
,2RM .  

Proposition 4.5 

For any Cc   , Mc   if and only if the Julia set cJ  of cf  is connected. 

The main component of the Mandelbrot set are loops generated by the periodic fixed points of cf . 

A loop is a smooth (differentiable), closed and simple curve in the complex plane. Therefore, before proving the 

theorem, we first prove the following lemma about loops. 

Lemma 4.5.1 

Let L  be a loop in the complex plane and czzf c  2)(  , then 

a) If c  is in the interior of L , then )(
1

Lf c


 is a loop, and the inverse image of the interior of L  is the interior of 

)(
1

Lf c


. 

b) If c  lies on L , then )(
1

Lf c


is a figure eight (a curve in the shape 8) with self intersection at 0  such that the 

inverse image of the interior of L  is the interior of the two loops. 

Proof 

First of all, we prove the lemma for a circle in the complex plane. The reason behind is that, by applying 

continuous transformation a circle can be transformed into a closed loop that we want. So, if we prove the lemma for a 

circle, we prove it for any closed loop in the complex plane. 

(a) 

 

Figure 4.1 

Suppose c  lie inside the circle L . We can translate the circle such that c  is the origin as shown in the figure 4.1. 

Since now 0c , zzfzzf cc 


)()(
12

. 

Let 
ierw   be a point on L , then 21

)(


i

c erzf 


. Start with w  as the point a  on the x-axis and 

consider only the positive square root of the inverse function, )(
1

wf c


 traces a loop in the complex plane as w  travels 

around the circle. Likewise, the point closest to c  is when w is at the angle
2

3  so, the inverse function is closest to the 
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origin at an angle of
4

3
. Therefore, doing a full 2  rotation around the circle, the inverse function maps out a rotation of 

 around the new loop and after a full 2  rotation we are the same distance away from c as when we started. So the 

inverse function at an angle of   will be at w . Thus tracing out the first 2  radians will give us a curve as shown in 

figure 4.2. 

 

Figure 4.2 

However, as we go around the loops, a second loop is drawn at the same time on taking the negative square root. 

The negative inverse function will map out a loop, exactly as the positive inverse function, only reflected about the origin. 

Putting all these pieces together, we should get a loop that looks like figure 4.3. 

 

Figure 4.3 

(b) Suppose c  is the Origin Lie in the Circumference of the Circle L  as given in Figure 4.4 

 

Figure 4.4 

Consider first the positive square roots for the inverse function and suppose the point w  will move around the 

circle from its initial position c . The furthest point from c for the inverse function will be at an angle
4


  , since the 

farthest point from c  on the circle is at an angle
2

 . Again the point w will make a full rotation around the circle and 
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returns to its initial position c when it is traced out an angle , therefore, for the inverse function, the loop returns to the 

origin when it traced out an angle
2

 . Also, by taking the negative square root function, another loop is formed as the 

mirror image of the first loop. These two loops are connected at the origin and hence they formed a figure eight as shown 

in the figure 4.5. 

 

Figure 4.5 

Proof of the Proposition 4.5 

First suppose that   0
k

cfMc   is bounded. Let L  be a large circle in C  which contains all the points 

of   0
k

cf . As cf c )0( , so c is in the interior of L . By lemma (a),  Lf c

1
 is a loop where the interior of L  is 

mapped to the interior of  Lf c

1
. Again   ccf c  22

0  is in the interior of L , so by applying the same lemma again, 

 Lf c

2
 is in the interior of  Lf c

1
. Continuing in this way, one may have the loop   0

k

cf


, inside a loop 

  0
1 k

cf  which is again inside the another loop   0
2 k

cf  and so on. Suppose, K  be the intersection of all such 

loops. 

Now,   KCzzf
k

c  ˆ, . Thus the basin of attraction of the fixed point at   is the set KC ˆ ,    thus 

K is the filled in Julia set of cf , i.e., cJKA  )()( [here )(K represent the boundary of the set K ]. Note 

that, K  is the intersection of infinitely many closed and simply connected set. So, K  itself is closed and simply 

connected by a theorem of topology. Thus, the boundary )( K  of K  is simply connected and hence the Julia set cJ  of 

cf  is connected. 

On the contrary, suppose that the Julia set cJ  of cf  is connected. If possible let,   0
k

cf  is not bounded.        

As above, consider a large circle L  in Ĉ  such that all points out side L  go to  . Note that, by our hypothesis 0  

under iteration of cf  even though L0 . Suppose, there exists Nn   such that for   nkf
k

c :0  lie inside L  and 

 nkf
k

c :  is in the outside of L . As before, create a sequence of loops, where, each new loop is inside the previous 

loop. Now, 

        LfcLcfffLf
n

c

n

cc

n

c

n

c




111
00

 

So by applying lemma 4.5.1 (b) we will create the loops in a unique way. By this lemma,  Lf c

1
 is a figure 

http://www.iaset.us/


48                                                                                                                          Arun Mahanta, Hemanta Kr. Sarmah & Gautam Choudhury 

 

Impact Factor (JCC): 2.6305                                                                                                                     NAAS Rating 3.45 

eight, i.e., an 8 shaped double loop intersecting at the origin. Applying the same lemma again,  Lf c

2
 is a figure eight, 

inside the figure eight created by  Lf c

1
, and intersects itself at origin. Keep doing this n  times, one can get n  numbers 

of figure eight each of which intersect at the origin. 

 

Figure 4.6 

Suppose, N  be the smallest of all such figure eight. Since the Julia set cJ  of cf  is invariant under iteration of 

cf  i.e.,   ccc JJf  , it must contain the smallest of all the figure eight, which is N . Since the Julia set is symmetric 

about the origin, cJ  must lie on both sides of the figure eight. Now, cJ0  as 0 . Therefore, 0  disconnect the cJ  

inside N which is absurd as by our assumption cJ  is connected. Hence,   0
k

cf  is bounded. 

Note, this proposition clearly suggests that the Julia sets corresponding to the points outside the Mandelbrot set 

will be disconnected one or Cantor dust. The link goes much deeper than that, the Julia sets corresponding to different 

areas of the Mandelbrot set have very different structures. Figure 4.7 shows such Julia sets for some values of ''c  

belonging to the different areas of the Mandelbrot set. 

 

Figure 4.7: (Julia Sets Corresponding to ‘c’ Located at Different Areas of Mandelbrot Set) 

Proposition 4.6 

If   czzf c  2
 has an attracting periodic point, then c  is on the Mandelbrot set M . 

Proof 

Suppose that cf  has an attracting periodic point, say 0z , 

The Schwarzian derivative of cf : 
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 
 
 

 
 

0
2

3
2

23















zDf

zfD

zDf

zfD
zSf

c

c

c

c
c  i.e., cf  is of negative Schwarzian derivative. 

Clearly,   00  zzDfc .i.e., 0z  is the only critical point of cf . Therefore, by the Theorem 2.2,      

the iterates of the critical point of cf , i.e., 0z  converges to 0z  and its iterates. Hence, the orbit of 0z  under cf  is 

bounded, which implies that c  is on the Mandelbrot set M . 

Proposition 4.7 

The body B  of the Mandelbrot set M  is the set of those complex numbers c  for which cf  has an attracting or a 

neutral fixed point. 

Proof 

By Proposition 4.6, if cf  has an attracting fixed point then Mc  . The fixed points of cf  are: 

 cz 411
2

1
1   and  cz 411

2

1
2  . 

Since,   zzDfc 2  so cf  has either an attracting or a neutral fixed point if 

  11 zDf c  or   12 zDfc  i.e., 1411  c  or 1411  c . 

Consider the complex number cw 41 
 

 

                                 (a)                                        (b)                                     (c) 

Figure 4.8 

Suppose that, yixw   and its polar coordinates are  ,r  i.e., 
222 yxr   and 

r

x
cos .  

Now,   2cos22cos4cos22211 2222  rr
r

x
rxyxw

 

Therefore, polar coordinates of 
2w  are  2,2r  i.e.   2,)2(cos22   , which shows that 

2w  has polar 

coordinates  ,r  such that )2(cos22 r ,   2,0 . 

Clearly, this is an equation of cardioid which meets the real axis when 0 and    i.e. at  0,4  and 

 0,0 . This cardioid is represented in Figure 4.8 (a). 
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Again, )2(cos22cos2211 222   rrxyxw . Thus a similar 

conclusion can be drawn for w  satisfying 11  w . 

From the above discussion it is clear that the locus of the complex number 
2w  satisfying 11  w  or 

11  w  is the cardioid  cos12 r ,   2,0 . Therefore, the locus of the complex numbers 
4

2w
  

satisfying the same conditions as above is the cardioids formed by reflecting the cardioids in Figure 4.8 (a) across the 

origin and contracting by a factor 
4

1
. This cardioid is represented in the Figure 4.8 (b) which meets real axis at  0,0  and 

 0,1 . Finally, the locus of  21
4

1
w  is the cardioid obtained by shifting the origin to 








0,

4

1
. Applying that shift 

to the cardioid in Figure 4.8 (b), we get the cardioid in the Figure 4.8 (c), which represent the body B of the Mandelbrot 

set. As  21
4

1
41 wccw  , we conclude that the complex numbers c  for which cf  has an attracting 

fixed point comprises the body B  of the Mandelbrot set. 

Note that the neutral fixed points of cf  occupies the boundary of the cardioid represented in Figure 4.8 (c) i.e., 

the boundary of the body B  of the Mandelbrot set as for these c ,   11 zDfc  or   12 zDfc . 

Proposition 4.8 

The head H  of the Mandelbrot set M is the set of those complex numbers ''c  for which cf  has an attracting         

2-cycle. 

Proof 

The 2-cyles of cf  are given by - 

   
  zccz

zczfzzf cc





22

22

 

        02 224  cczzcz   

            0122  czzczz   

Since, 02  czz  will give the fixed points of cf , so in order to disregard the fixed points we omit the 

factor  czz 2
 and get 

012  czz  

Solving, we get the roots as  cz 431
2

1
1   and  cz 431

2

1
2  . 
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Clearly     1221 & zzfzzf cc  . 

Now  21 , zz  will be an attracting 2-cycle of cf  if 

       11 111
2  zDfzfDfzfD cccc  

        112  zDfzDf cc  

      1.4 21  zz  

      
4

1
1  c  

Thus, it is clear that all the complex numbers bounded by the circle 
4

1
1 c  of radius 

4

1
 and center at 

 1,0   represent the attracting 2-cycle of cf . This circle is the head H  of the Mandelbrot set. 

In addition to Proposition 4.7 and 4.8, all the primary bulbs in the Mandelbrot set can be put in a correspondence 

with the existence of a periodic orbit for a given period. 

Substituting   zzDfc 2  by 
ier  where  20,0 r  for the fixed points of cf  we get

 22

4

1

2

1 ii ererc  .  

As 1r  for neutral fixed points of cf  for each value of )20(   , we get a complex number 

 2

4

1

2

1 ii eec   which lies on the surface of the body ' B '. It turns out at that, the parameter values of 

,5,4,3,2,
2

 n
n


 one of the primary bulb is attached to the body ' B '. 

Moreover, the bulb at 
n




2
  (for a particular ,4,3,2n ) is the set of those complex numbers c  for 

which, cf  has an n-cycle. For example, when 2n  i.e.,    we have the head H of the Mandelbrot set, which is the 

collection of all 2-cycles of cf  as shown in proposition 4.8. 

Also, there is a surprising relationship between the cycle number ' n ' and the number of spokes on the antennas of 

these primary bulb. It is observed that these two numbers are same for any ' c ' inside a primary bulb. In figure 4.9 we have 

summarized some of these results graphically. 
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Figure 4.9: (Some Primary Bulbs, Labeled According to Their Period) 

There are sevaral amazing features of the Mandelbrot set in relation to the periodic numbers of bulbs which are 

scattered in the surface of the Mandelbrot set. First, it is observed that, if we travel clockwise from the head H          

(whose periodic number is 2 ), the next big bud (smaller than H ) attached to the body B  corresponds to period-3 

behavior, after that we get next big bud with house parameters belonging to attractive cycle of period 4, and then the next 

big bud is of period-5 and so on. Figure 4.10 illustrat this fact graphically. 

Another amazing fact is the presence of Fibonacci sequence in the Mandelbrot set. It is observed that,                   

if two neighbouring buds have periodicity 1n  and 2n
  

then the periodicity of the largest bud that is smaller than these two 

and lies in between is 21 nn  . The famous Fibonacci sequence  nF  is defined as 

          ,4,3,2;21,110  nnFnFnFFF . 

We start with  2F  to be the periodicity of the period two bulb (i.e., the head H ), and then taking  3F  to be 

the period of the next largest bulb by moving clockwise around the boundary,  4F  the period of the next largest bulb 

moving counter clockwise, and so on. Note that, here we always consider the largest bulb between the previous two, and if 

at any instance we move clockwise, then the next motion will be counter clockwise. 

This observation is exibited graphically in figure 4.11. 

 

Figure 4.10: (Ordering of Periodicity of the Bulbs in Natural Numbers) 
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Figure 4.11: (Fibinacci Sequence in the Mandelbrot Set) 

Further, to explore the geometry of the periodic orbits in the primary bulbs of the Mandelbrot set, we assign each 

bulb a real number of the form 
n

m
, called the rotation number of the bulb. 

Definition 4.1 [1] 

The rotation number of a bulb in the Mandelbrot set is the real number 
n

m
where, the denominator ''n  is the 

periodicity of the bulb and if  nzzz ,,, 21   is a periodic orbit on that bulb, then the numerator ''m  is the number such 

that 

  nkzzf mkkc ,,2,1,     

Note that the bulb with rotation number 
n

m
 is termed as 

n

m
 bulb.

 

One can easily determine the rotation number of a bulb by closer inspection at the bulb in the Mandelbrot set [10]. 

The total number of spokes in each of the antenna that are attached to the bulb is the same and it determines the periodic 

number of the bulb i.e. the denominator n of the rotation number. These spokes are different in length. The shortest one 

counterclockwise from the main one is the m th one. These facts are illustrated in figure 4.12 by considering two bulbs   

with rotation numbers 
5

2
 and

7

3
.
 

 

(a) 
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(b) 

Figure 4.12: [Bulbs with Rotation Number (a) 2/5 and (b) 3/7] 

Julia sets, corresponding to the parameter value belongs to such bulb consists of several buds meeting at a point. 

The number of such buds for each parameter value within a bulb is the same, and this number of such buds gives the 

periodic number n of the bulb. The smallest of these n buds counterclockwise from the main bud (excluding the main bud) 

is the m th one. In this way, the rotation number can be determined from the Julia set of the appropriate value of c.         

This fact is demonstrated graphically in figure 4.13. 

   

(a)                                                                        (b) 

Figure 4.13: [Julia Set with Parameter Value (a) in the 2/5 Bulb (b) in the 3/7 Bulb] 

The rotation numbers of the primary bulb has an interesting relation with the Farey sequence, which is relevant in 

number theory. In order to understand the relation, we first explore the concept of Farey addition. The Farey addition of 

two rational numbers 
1

1

n

m
and 

2

2

n

m
 is defined as  

21

21

2

2

1

1

nn

mm

n

m

n

m




  

It is an established fact that, if the two fractions have no number with a smaller denominator than either of their 

denominators between them, then the resulting fraction is the fraction with the smallest denominator between them [15]. 

For better understanding of Farey addition process, we construct the diagram, given in figure 4.14, as follows: 
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Figure 4.1: [The Farey Diagram] 

First, we draw a semi-circle and considering the centre as origin, we denote the point in the semi-circle at   

radians by
1

0
, at 0  radians by

1

1
, 

2



 
radians by

2

1
. 

Now draw curved arcs joining 
1

0
 to 

2

1
 and 

1

1
 to 

2

1
. We say that 

2

1
 is the Farey child of the Farey parents 

1

0
 

and 
1

1
. Similarly, 

3

2
 is the Farey child of the Farey parents 

2

1
 and 

1

1
; 

3

1
is the Farey child of 

1

0
 and 

2

1
 and so on.    

Note that the Farey child is nothing but the Farey addition of their respective Farey parents. 

The terminology Farey child and the Farey parents are first introduced by Devaney [11]. 

 

Figure 4.15: [Rotation Number of Primary Bulb and Farey Addition] 

It is observed that the primary bulbs in the Mandelbrot set are arranged in a similar fashion of Farey addition 

method, in terms of their rotation numbers. The rotation number of the biggest primary bulb in between two bulbs is the 

Farey child of their rotation numbers. For example, the rotation number of the biggest bulb in between the bulbs of rotation 

number 
2

1  and 
3

1  is their Farey child 
5

2 . 

Similarly, the rotation number of the biggest bulb in between 
5

2
-bulb and 

3

1
-bulb is their Farey child 

8

3
and so 

on. We have explicitly exhibited this fact in figure 4.15. 

5. CONCLUSION 

The dynamic behavior and graphical complexity of Mandelbrot set provides a beautiful example of the fascinating 

world of fractals. Every little piece of it is loaded with some mathematical meaning. Our study helped us to understand 
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some of such mathematical properties. We observed some amazing features shown by the periodic numbers and rotation 

numbers related to the primary bulbs of the Mandelbrot set, which are guided by sequences like Fibonacci sequence, Farey 

sequence etc. We think, there is enough scope of further investigation to find out many such amazing features in the 

Mandelbrot set. 
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